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Hybrid-Mode Analysis of Planar Transmission
Lines with Arbitrary Metallization Cross Sections

Zhewang Ma, Eikichi Yamashita, Fellow, IEEE, and Shanjia Xu, Senior Member, IEEE

Abstract—The problem of planar transmission lines of arbi-
trary metallization cross sections is solved by using the gener-
alized transverse resonance technique combined with the mode-
matching procedure. Analyses are carried out on the dispersion
characteristics of microstrip lines, finlines and coplanar waveg-
uides with trapezoidal strip cross sections. Numerical results
verify the versatility and accuracy of this method, and show that
the profiles of the metallizations in miniaturized MMIC guiding
structures give marked effects on the transmission properties.

1. INTRODUCTION

HE CONTINUING process in microwave monotithic

integrated circuits (MMIC’s) is towards higher frequen-
cies, higher component densities, smaller miniaturized circuit
sizes, and the development of higher performance components
with increasing complexity. As a result of improvements in
fabrication technology, the design of MMIC’s demands more
accurate modeling of practically used waveguiding structures,
and consequently some of the approximations employed in the
computer aided design (CAD) of microwave circuits become
no longer useful. In particular, due to the very narrow strip
width used in the MMIC’s [1]-[6], the exact profile of the
conductor strip should be considered to characterize exactly
the transmission propetties of the planar waveguides. Actually,
a variety of complicated cross sections are exhibited in active
and passive MMIC waveguiding structures which are neither
of planar nor of rectangular geometry. For example, because
of the occurrence of underetching or electrolytical growth
during fabrication, the cross section of the strip is likely to
be better approximated by a trapezoid than by a rectangle
[1]-[3]. Although the effect of the metallization thickness on
the transmission properties of planar transmission lines has
been discussed in some papers [7]-[9], most are restricted to
the cases where the cohductor strips have rectangular cross
sections. Only very recently has the more general problem
of a microstrip with arbitrary conductor cross section been
treated [1]-3].

The flexibility of the finite element method (FEM) and
the finite difference method (FDM) may be used to deal
with arbitrary conductor cross-sections. But these methods
require large computer memory as well as time-consuming
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computations [1]-[{3]. The mode-matching method has been
shown to be a very versatile and effective method for a
variety of electromagnetic problems [7]-[12]. However, to the
authors’ knowledge, this method has not so far been applied
to planar waveguides with arbitrary metallization

In this contribution, based on the mode-matching procedure,
the dispersion analysis of planar waveguides of arbitrary
perfect conductor cross-sections is presented by using the
step approximation of the conductor profile and the transverse
resonance techniques. As examples, the dispersion character-
istics of microstrip lines of rectangular and trapezoidal strip
cross sections are calculated, and comparison, where possible,
is made with results by other authors. For the first time,
provided are the propagation constants of finlines and coplanar
waveguides with trapezoidal metallization cross sections, and
a comparison between the effects of the conductor thickness
and the conductor geometry on the propagation constants of
coplanar waveguides.

II. FORMULATION OF THE PROBLEM

Fig. 1 shows a generalized planar waveguiding structure.
It consists of an arbitrary number of metallic strips deposited
on various dielectric substrate interfaces. In this analysis, the
arbitrary profiles of metallic strips are approximated by a series
of small steps, as shown in Fig. 2. In general, the fields in the
dielectric slab-loaded, ridged waveguide may be expressed as
a superposition of the LSE and LSM modes with respect to
the z-direction (i.e., the TE and TM modes with respect to the
y-direction). Following the conventional transverse resonance
procedure [7]-{9], we consider that the LSE and LSM modes
propagate in the transverse direction and couple each other at
discontinuities of various vertical planes. The hybrid modes as
waveguide fields are formed as a result of repeated reflections
of the LSE and LSM mode waves at short or open-circuited
ends and discontinuities. Thus, at first we derive the scattering
matrix of the N-furcated waveguide junction as shown in
Fig. 3 for the LSE and LSM mode excitation, then we use the
generalized scattering matrix technique to obtain the overall
scattering matrix of the cascaded discontinuities, and finally we
formulate the eigenvalue equation for the propagation constant
by using the transverse resonance condition.

A. Treatment of the N-Furcated Waveguide Junction

The hybrid mode fields, £ and H, are derived from the
electric- and magnetic-type Hertzian potential functions, IT°
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Fig. 1. A generalized planar guiding structure.

Fig. 3. An N-furcated waveguide junction.

and IT", as follows:

E=V xV xII° - jwuV x II" (1)
H=VxVxI"+ jweV x II* 2)

Appropriate solutions for II" and IT° in the ith waveguide
are derived by using the method of the separation of variables
and are given by
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- If the vector-mode functions, €;, and fzm, are defined

by replacing &k, with —k, in (5a)-(5d) [10], the following
orthonormality relations are satisfied
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where 8, is the Kronecker delta (= 1 if n = m;= 0
if n # m). In the lossless case, k., is purely real for
propagating modes. According to the definition of the tilded-
mode functions and to (5), it is evident that when no loss is
present the tilded-mode functions are the complex conjugates
of those in (5).

Now the electric and magnetic fields in the ith guide at
z = 0 may be expanded in an infinite sum of LSE- and
LSM-mode components as
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where the coefficients, A;, and B;,, represent the amplitudes
of the incident and reflected (with respect to the y-direction)
waves in the ith guide. Using the boundary conditions at
y = 0and z = 0 and matching the tangential fields, E,;
and H.,,, lead to a pair of equations on the tangential compo-
nents of electromagnetic fields. Vector-multiplying the electric

component vector equation successively by h,,, and fzim,
and the magnetic component vector equation successively by
el and &,,, using the orthonormality relation (6) and taking
truncation on both sides of these equations, we get a set of
linear simultaneous equations in the following matrix form:
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As all the space vector mode-functions in the above integral

are the combinations of sine and cosine functions, the integra-
tions can be analytically carried out easily. The tilded functions
(R’f: Ynm and (Ri?)nm are also defined by replacing k. with
—k, in (R2¢)pm, tespectively. From (9) and (10), it is not
difficult to deduce the scattering matrix S of the N-furcated
junction in a form as shown below
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So1 =2+ HR)'H = (S22 + DH (12b)
Si1o =2R(I+ HR)™' = R(S22 + I) (12¢)
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B. Cascaded Discontinuities

In the case of cascaded discontinuities, there are two ap-
proaches. The first is to combine the transmission matrices
of individual discontinuities for expressing the overall trans-
mission matrix, and it requires an equal number of modes
in any of the sections connecting discontinuities. As is well
known, however, the mode-matching analysis usually requires
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Fig. 4. Scattering matrix representation of cascaded discontinuities.

a proper choice of the number of modal terms retained in
the guides connected to the junction to overcome the relative
convergence problem [11], [12], and it has been shown in
[11] that the requirement of an equal number of modal
terms in any of the sections may violate the edge condition,
resulting in incorrect numerical solutions. Thus, in this paper
the cascaded discontinuity problems are treated by using the
second approach, i.e., the generalized scattering matrix method
[12].

Referring to Fig. 4, the sub-matrices of the overall scattering
matrix (superscript ¢) of two cascaded junctions, separated by
a uniform line section of length [, are given by

5% =85 + sV DESD DS (13a)
5% =8 DES) (13b)
sP = sPprsV (13¢c)
S59 =85 + S$YDFSS) DS (13d)
where
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D= H)h pd ] (14)

and D" and D* are diagonal matrices whose diagonal elements
are given by

ju— 3 _ e
Dh =e7tbunl DE = e Rl (15)

C. Transverse Resonance Condition and Eigenvalue Equation

Out of the uniform sections connecting the discontinuities,
we choose the one having the smallest vertical dimension
(with respect to the transverse resonance direction, and use
S and ™ to indicate the overall scattering matrices
of the cascaded discontinuities on its left and right side,
respectively, as indicated in Fig. 5. The column vectors,
AL and B(L)7 accounting for incident and reflected wave
amplitudes, respectively, of matrix S in the left end region,
and vectors AP and B of matrix S in the right end
region, are related through the two end boundaries, which
may be an electric wall (short-circuited) or a magnetic wall
(open-circuited), as follows:

AL — :FD(L)D(L)B(L),

AR ;FD(R)D(R)B(R) (16)
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Fig. 5. Application of transverse resonance condition,

where the sign F corresponds to the electric (upper one) and
magnetic (lower one) wall, respectively. In the middle section,
the forward and backward wave amplitudes are related by

AR :D(M)B’(M)7

A/ — p(M) (M) (17)
where A®D and B™) are the amplitude column vectors of
the incident and reflected modes, respectively, of matrix s
in the middle section, and A’®) and B'™) of matrix S,
The diagonal elements in the diagonal matrices, D<L),D(R)
and DM ), are defined in a similar way to that of (14) and
(15), with the transverse propagation constant and propagation
length [ of the corresponding section.

Substituting (16) and (17) into the scattering matrix ex-
pressions of ST and § (R), the amplitude column vectors,
AL BE) AR BE) A ang 4D may be eliminated,
and B and B'™) are related by

B(Z\I) - (ng)E(L)Sgg) + Ség))D(AI)B/(M)
BM) :(Sgll%)E(R)Sglz%) + Sg;))D(M)B(M)

(18)
(19)
where B and EY) are defined as
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E® - 4 p®pE (I - Sﬁ{)D(R)D(R))_l
For the existence of nontrivial solutions for the linear
simultaneous equations, (18) and (19), the determinant should

vanish, that is, the following eigenvalue equation should be
solved

DetG =0 (20)
where
G=1-(S5EW s} + 850D
(S EPS + 550D @D

By using the transverse resonance condition at the section
with the smallest vertical dimension, we obtain the final
eigenvalue matrix G with the smallest size as the number of
modal terms is the smallest in this region.

The commonly used transverse resonance procedure in other
papers [7]-[11], on the contrary, is to treat the cascaded
discontinuities from the left to the right or from the right to
the left in sequence, and then to impose the two end boundary
conditions. This procedure usually results in a large eigenvalue
matrix since the two end sections are large in dimensions in
most practical configurations.
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Moreover, we may notice that as the coefficients of the mode
functions in (5) are normalized, the elements in the scattering
matrices, S (L) and S(R), are of order 1; and that the elements
in the diagonal matrices D), D) D(R) - exponentially
decay (in the y-direction) for the evanescent I.SE and LSM
modes, so that the final eigenvalue matrix G in (21) is diagonal
dominant with the diagonal elements of order 1. The reduced
size of the eigenvalue matrix and the good property of the
matrix elements enable the numerical computation process
to be quite stable with the determinant of the eigenvalue
matrix neither too large nor too small, thus greatly ease
the numerical root searching process for eigenvalues. This is
another merit of our method against the conventionally used
transverse resonance process. Usually after several searching
steps, the root of (20) may rapidly converge to results with
good accuracy in the present method.

III. NUMERICAL RESULTS

The above stated process has been programmed for numer-
ical calculation, and it has been checked against published
data for various planar waveguides with rectangular conductor
cross sections and for microstrip lines with trapezoidal cross
section.

In Fig. 6(a), the propagation constant of the microstrip is
shown as a function of frequency for trapezoidal conductor
strips with corner angles « of 45° (underetched), 90° (rect-
angular), and 135° (electrolytic growth), respectively. Where
available, the results are compared with those obtained by
Railton and Mcgeehan [1], who used the finite-difference time-
domain method (FDTD). While good agreement has been seen
for a = 90°, 135°, there is marked discrepancy for o = 45° at
the high frequency end, where with the increase of frequency,
the curve given by [1] did not rise smoothly but with a faster
tendency towards crossing over the curve for o = 90°. We
consider this questionable and our results are more reliable.
The calculation procedure of FDTD in [1] may need a larger
number of nodes in order to ensure the convergence and the
accuracy of its results.

So far the effect of the conductor strip cross section on
higher order modes in microstrip lines has not been given
by other authors. Here in Fig. 6(b), it is provided for the
first higher order mode. As can be seen, the influence on the
propagation constant is also pronounced and the single-mode
bandwidth of the microstrip line varies for about 5 GHz.

Table I shows the convergence property of the effective
dielectric constant of the dominant mode in the microstrip line
with the number of division layers of the trapezoidal conductor
strip (@ = 135°). We can see that a 3 or 4 layer divison yields
converged results with satisfactory accuracy. As is well known,
if the strip is extremely thin, the influence of its thickness
on the propagation property of planar transmission lines will
be very weak, so that usually a small number of divisions
give converged results and further divisions make almost no
contributions.

In Fig. 7, the effect of the metallization cross section on
the propagation constant of finlines with mounting grooves is
demonstrated. As can be seen, the discrepancy between the
results of the two conductor profiles may be as large as 10%.
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Fig. 6. Normalized propagation constant versus frequency for microstrips
of various cross sections. (a) Dominant mode. (b) First higher order mode;
¢ = 10 mm, b = 6.05 mm, t = 300pm,s = 0.635 mm, w = 3 mm,
er = 9.8.

TABLE I
CONVERGENCE PROPERTY OF THE E FFECTIVE DIELECTRIC CONSTANT OF THE
DOMINANT MODE IN THE MICROSTRIP LINE WITH THE NUMBER OF
DivisioN LAYERS OF THE TRAPEZOIDAL CONDUCTOR STRIP (o = 135°)

Number
of Effective Dielectric Constants
Lay-
ers
1 5 10 15 20 25 30
GHz GHz GHz GHz GHz GHz GHz
2 2.73448 2.80811 2.89403 2.94949 298809 3.01626 3.03735
3 274168 2.81456 2.89911 2.95341 299107 3.01850 3.03903
4 2.74745 2.81981 2.90334 2.95674 2.99364 3.02048 3.04054
5 2.74769 2.81999 2.90346 295682 2.99371 3.02053 3.04058
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Fig. 8. Normalized propagation constant versus frequency for suspended
coplanar waveguides of various cross sections; ¢ = 2b = 3.1 mm, d = 0.6
mm, w = 0.1 mm, s = 0.22 mm, t = 20 ym, e, = 12.9.

In the uniplanar MMIC concept [4], coplanar waveguides
(CPW’s) constitute the basic transmission line elements. Their
cross sectional dimensions can be scaled down to values much
smaller than those of the equivalent microstrip lines [4]-[6].
Because of the small cross sectional geometry, the CPW’s are
considerably less dispersive than the microstrip lines, and have
an extended frequency range as well as a reduced circuit size.
In Fig. 8, the propagation constants of both the dominant and
the first higher order mode of a suspended coplanar waveguide
(SCPW) are illustrated. While the geometry influence on the
odd mode is negligible, it is, however, significant for the
dominant mode over the whole frequency range.

3.0 T

B /Ko

t (zm

Fig. 9. Normalized propagation constant versus metallization thickness ¢ for
coplanar waveguides of various cross sections; ¢ = 150 ym,b = 5 mm,
s =06mm,d=50pum,w = 10pum, e, = 12.9.

Miniaturized CPW structures with width d of 30-70 ym are
in use [5], [6]. For such miniaturized structures, we predict that
the conductor profile will have even more pronounced effects
on the transmission characteristics. To give an example, we
provide in Fig. 9 the data on the propagation constants of
a CPW with d = 50 pm and center strip width 10 pm for
different metallization thickness £. As expected, for extremely
thin metallization, the influence of both its thickness and its
profile is negligible, however, as the metallization thickness ¢
becomes larger, the influence of its profile grows rapidly. For
example, the discrepancies between results for ¢ = 4 ym and
that for zero metallization thickness, are about 8% and 20%
for the rectangle and the trapezoid, respectively. Also we note
that the discrepancy between the latter two is about 12%. In
such cases, it is certain that the effect of the metallization cross
sections can no longer be neglected in order to obtain accurate
and reliable predictions of performances of MMIC’s.

IV. CONCLUSION

An analysis method has been proposed for planar waveg-
uides with arbitrary metallization cross sections, and compu-
tations have been performed for various kinds of structures,
which prove that the method is versatile and efficient. Nu-
merical results indicate that, in the development of modern
MMIC structures, which is towards higher frequencies and
miniaturized sizes, the role of the metallization geometry
becomes more and more important, and the exact modeling
of practically used configurations is necessary so that accurate
and reliable performance can be expected.
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