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Abstract-The problem of planar transmission lines of arbi-

trary metallization cross sections is solved by using the gener-
alized transverse resonance technique combined with the mode-
matching procedure. Analyses are carried out on the dispersion
characteristics of microstrip lines, finlines and coplanar waveg-
uides with trapezoidal strip cross sections. Numerical results
verify the versatility and accuracy of thk method, and show that

the profiles of the metallizations in miniaturized MMIC guiding

structures give marked effects on the transmission properties.

I. INTRODUCTION

T HE CONTINUING process in microwave monolithic

integrated circuits (MMIC’s) is towards higher frequen-

cies, higher component densities, smaller miniaturized circuit

sizes, and the development of higher performance components

with increasing complexity. As a result of improvements in

fabrication technology, the design of MMIC’s demands more

accurate modeling of practically used waveguiding structures,

and consequently some of the approximations employed in the

computer aided design (CAD) of microwave circuits become
,,

no longer useful. In particular, due to the very narrow strip

width used in the MMIC’s [1 ]–[6], the exact profile of the

conductor strip should be considered to characterize exactly

the transmission properties of the planar waveguides. Actually,

a variety of complicated cross sections are exhibited in active

and passive MMIC waveguiding structures which are neither

of planar nor of rectangular geometg. For example, because

of the occurrence of underetching or electrolytical growth

during fabrication, the cross section of the strip is likely to

be better approximated by a trapezoid than by a rectangle

[1]–[3]. Although the effect of the metallization thickness on

the transmission properties of pl~ar transmission lines has

been discussed in some papers [7]–[9], most are restricted to

the cases where the cofiductor strips have rectangular cross

sections. Only very recently has the more general problem

of a microsttip with arbitrary conductor cross section been

treated [1]–[3].

The flexibility of the finite element method (FEM) and

the finite difference method (FDM) may be used to deal

with arbitrary conductor cross-sections. But these methods

require large computer memory as well as time-consuming
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computations [1 ]–[3]. The mode-matching method has been

shown to be a very versatile and effective method for a

variety of electromagnetic problems [7]–[ 12]. However, to the

authors’ knowledge, this method has not so far been applied
to planar waveguides with arbitrary mretallization

In this contribution, based on the mode-matching procedure,

the dispersion analysis of planar waveguides of arbitrary

perfect conductor cross-sections is presented by using the

step approximation of the conductor profile and the transverse

resonance techniques. As examples, the dispersion character-

istics of microstrip lines of rectangular and trapezoidal strip

cross sections are calculated, and comparison, where possible,

is made with results by other authors. For the first time,

provided are the propagation constants of finlines and coplanar

waveguides with trapezoidal metallization cross sections, and

a comparison between the effects of the conductor thickness

and the conductor geometry on the propagation constants of

coplanar waveguides.

II. FORMULATION OF THE PROBLEM

Fig. 1 shows a generalized planar waveguiding structure.

It consists of an arbitrary number of metallic strips deposited

on various dielectric substrate interfaces. In this analysis, the

arbitrary profiles of metallic strips are approximated by a series

of small steps, as shown in Fig. 2. In general, the fields in the

dielectric slab-loaded, ridged waveguide may be expressed as

a superposition of the LSE and LSM modes with respect to

the z-direction (i.e., the TE and TM modes with respect to the

y-direction). Following the conventional transverse resonance

procedure [7]–[9], we consider that the LSE and LSM modes

propagate in the transverse direction and couple each other at

discontinuities of various vertical planes. The hybrid modes as

waveguide fields are formed as a resuh of repeated reflections

of the LSE and LSM mode waves at short or open-circuited

ends and discontinuities. Thus, at first we derive the scattering

matrix of the iV-furcated waveguide junction as shownl in

Fig. 3 for the LSE and LSM mode excitation, then we use the

generalized scattering matrix technique to obtain the overall

scattering matrix of the cascaded discontinuities, and finally we

formulate the eigenvalue equation for the propagation constant

by using the transverse resonance condition.

A. Treatment of the N-Furcated Wat’eguide Junction

The hybrid mode fields, E and H, are derived from the

electric- and magnetic-type Hertzian potential functions, IIe
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Fig. 1. A generalized planar guiding structure.

Fig. 2. Step approximation ofanarbitrary metdlization profile.

4X

Y

Fig. 3. An N-furcated waveguide junction.

and lIh, as follows:

E= VxVxlIe-jwpVxlIh (1)

H= VXVXIIh+jWEVXIIe (2)

Appropriate solutions for lIh and lle in the ith wavegttide

are derived by using the method of the separation of variables

and are given by

and the transverse components (with respect to the y-direction)

of the fields are then expressed as

e?. =fic$.(-~k.cosk$i.(~-hi]i.

+ k!& sin k!&(~ – hi)i.)e–~kz’ (5a)

h~n = &C~n(k~in sin k~in(x – hi)iz

+ j~~ cos A&(x – hi)iz)e-~kzz

et. = ~f7&-&n cos k~in(z - k)i.

(5b)

+ ~k. sin k~in(x – hi)~Z)e-~~”” (5C)

h~n = &C~n(jtk. sin k&(x – hi)iz

+ k~in cos k~in(~ – hi)i.)e–~kz’ (5d)

where

—

C:n = ‘2
k:in ~

{

~ = 1 ifn=O
on

O ifn #O’

{

0, 1,2,. . . for LSErnode

n = 1,2,3, . . . forLSMmode

If the vector-mode functions, eim and h;n, are defined

by replacing k. with –k. in (5a)–(5d) [10], the following

orthonormality relations are satisfied

(6a)

(6b)

(6c)

(6d)
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(7)

where ~mm is the Kronecker clelta (= 1 if n = m; = O
if n # m). In the lossless case, k~ is purely real for

propagating modes. According to the definition of the tilded-

mode functions and to (5), it is evident that when no loss is

present the tilded-mode functions are the complex conjugates

of those in (5).

Now the electric and magnetic fields in the ith guide at

z = O may be expanded in an infinite sum of LSE- and

LSM-mode components as

EJZ, y) =

~ (~:ne-~%nu + B~me$~~*”Y)e~n(z)

n=o,l ,2,...

+ ~ (A~ne–~kj..y + B$ e~k~.nYan

~=l,z,a...

+ fl~ne~k:’~y)e~n(r)

Hit(z, y) =

~ (A~ne-~k: Y – BZ~eJk~tny)h$n(~)

n=(),l)2,...

+ ~ (Afne–~k~~~y – Bfne~k~’”y)h~n(z) (8)

n=l,2,3,...

where the coefficients, Ai~ and %, represent the amplitudes

of the incident and reflected (with respect to the y-direction)

waves in the ith guide. Using the boundary conditions at

y = O and z = O and matching the tangential fields, E,t

and Il,t, lead to a pair of equations on the tangential compo-

nents of electromagnetic fields. Vector-multiplying the electric
-h

component vector equation successively by hl~ and &~,

and the magnetic component vector equation successively by

E:m and ~~m, using the Orthonormality relation (6J and taking

truncation on both sides of these equations, we get a set of

linear simultaneous equations in the following matrix form:

[1A! + l??

A; + 1?;

[

Rhh R:; . . .
$;

R~~ R;~—
R~~ . . . R~N R~~ 1–‘A;+B;

“!’1

A; + B;

A~ + B;
A% + Bfi

A; + B:

[1

A; + B;

= [R] :
hN+B~

A> + B;
h

– A;

~ ][: ]

2
e

– A;
:g :;!

2
——

: A~ H~~ H;$
e

– A} H:; H:%

(9)

/

%

(H?$)TTMI= hh_L~:mx ~fn.Eydx
.,

= (R!:)nm

/(@%n= hh:L%x h!. ~iydx
ZL

= (R:;)nm

/(H::)- = ;:Ld’mx % . i, dx
,,

= (R;:)nm

J

t
(H;:)mn = ~h_LE;m X h;n . iy dx

,.

= (R;;)nm

i=2,3, . . ..N

As all the space vector mode-functions in the above integral

are the combinations of sine and cosine functions, the integra-

tions can be analytically carried out easily. The tilded functions

(R~~)mm and (~~~)nm are also defined by replacing k. with

–k= in (R~~)~~, respectively. From (9) and (10), it is not
difficult to deduce the scattering matrix S of the N-furcated

junction in a form as shown below

where

S22 = (I+ HR)-l(l - HR)

=2(I+HR)-1 –1

(11)

(12a)

S21 = 2(1+ HR)-lH = (S22 + ~)H (12b)

Slz = 2R(l + HR)-l = R(S22 + 1) (12C)

S1l =S12H – I = RSZ1 – I (12d)

B. Cascaded Discontinuities

In the case of cascaded discontinuities, there are two ap-

proaches. The first is to combine the transmission matrices

of individual discontinuities for expressing the overall trans-

mission matrix, and it requires an equal number of modes

in any of the sections connecting discontinuities. As is ‘well

known, however, the mode-matching analysis usually requires
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Fig. 4. Scattering matrix representation of cascaded discontinuities.

a proper choice of the number of modal terms retained in

the guides connected to the junction to overcome the relative

convergence problem [11], [12], and it has been shown in

[11] that the requirement of an equal number of modal

terms in any of the sections may violate the edge condition,

resulting in incorrect numerical solutions. Thus, in this paper

the cascaded discontinuity problems are treated by using the

second approach, i.e., the generalized scattering matrix method

[12].

Referring to Fig. 4, the sub-matrices of the overall scattering

matrix (superscript t) of two cascaded junctions, separated by

a uniform line section of length 1, are given by

where

E =(1 – Symfib-1

1’== (1 – Symfibl-1

(14)

and Dh and D’ are diagonal matrices whose diagonal elements

are given by

C. Transverse Resonance Condition and Eigenvalue Equation

Out of the uniform sections connecting the discontinuities,

we choose the one having the smallest vertical dimension

(with respect to the transverse resonance direction, and use

S(L) and S(R) to indicate the overall scattering matrices

of the cascaded discontinuities on its left and right side,

respectively, as indicated in Fig. 5. The column vectors,
A(L) and B(L), accounting for incident and reflected wave

amplitudes, respectively, of matrix S(L) in the left end region,

and vectors A(R) and B(~J of matrix S(R) in the right end

region, are related through the two end boundaries, which

may be an electric wall (short-circuited) or a magnetic wall

(open-circuited), as follows:

A@) = @L)~(~)B(~),

A(R) = @R)~@)@@ (16)

*(L) *(l’f) A’(hf) *(R)

,(L)
#L) ‘“

,(.M) #1) —
~(R)

—.

B(L) B(M) B,(M) @

Left end R8ght end
short circwt short circuit
or open czrcud or open czvcuit

Fig. 5, Application of transverse resonance condition.

where the sign + corresponds to the electric (upper one) and

magnetic (lower one) wall, respectively. In the middle section,

the forward and backward wave amplitudes are related by

A(~f) = @’f)~@f) ,

A@~) = ~(~)B(~f) (17)

where A(~~) and ~(flf) are the amplitude column vectors of

the incident and reflected modes, respectively, of matrix S(L)

in the middle section, and A’(Lr) and 11’(~) of matrix S(R).

The diagonal elements in the diagonal matrices, D@), D(R)

and D(hr), are defined in a similar way to that of (14) and

(15), with the transverse propagation constant and propagation

length 1 of the corresponding section.

Substituting (16) and (17) into the scattering matrix ex-

pressions of S(L) and S(R), the amplitude column vectors,
A(L) B(L) A(R) B(R) A(hf) and A’(A~) may be eliminated,

and ~(~~) ~nd ~’(kf) ire related by ‘

where

For

simultaneous equations, (18) and (19), the determinant should

vanish, that is, the following eigenvalue equation should be

solved

Det G=O (20)

where

G = 1 – (S~)13(L)S~) + S~))ll(M)

(~) (R)s;;) + & )&J)(Szl E (21)

By using the transverse resonance condition at the section

with the smallest vertical dimension, we obtain the final

eigenvalue matrix G with the smallest size as the number of

modal terms is the smallest in this region.

The commonly used transverse resonance procedure in other

papers [7]–[1 1], on the contrary, is to treat the cascaded

discontinuities from the left to the right or from the right to

the left in sequence, and then to impose the two end boundary

conditions. This procedure usually results in a large eigenvalue

matrix since the two end sections are large in dimensions in

most practical configurations.
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Moreover, we may notice that as the coefficients of the mode

functions in (5) are normalized, the elements in the scattering

matrices, S(L) and S(R), are of order 1; and that the elements

in the diagonal matrices D@), D(~J, D(R), exponentially

decay (in the y-direction) for the evanescent LSE and LSM

modes, so that the final eigenvalue matrix Gin (21) is diagonal

dominant with the diagonal elements of order 1. The reduced

size of the eigenvalue matrix and the good property of the

matrix elements enable the numerical computation process

to be quite stable with the determinant of the eigenvalue

matrix neither too large nor too small, thus greatly ease

the numerical root searching process for eigenvalues. This is

another merit of our method against the conventionally used

transverse resonance process. Usually after several searching

steps, the root of (20) may rapidly converge to results with

good accuracy in the present method.

III. NUMERICAL RESULTS

The above stated process has been programmed for numer-

ical calculation, and it has been checked against published

data for various planar waveguides with rectangular conductor

cross sections and for microstrip lines with trapezoidal cross

section.

In Fig. 6(a), the propagation constant of the microstrip is

shown as a function of frequency for trapezoidal conductor

strips with corner angles a of 45° (underetched), 90° (rect-

angular), and 135° (electrolytic growth), respectively. Where

available, the results are compared with those obtained by

Railton and Mcgeehan [1 ], who used the finite-difference time-

domain method (FDTD). While good agreement has been seen

for a = 90°,135°, there is marked discrepancy for a = 45° at

the high frequency end, where with the increase of frequency,

the curve given by [1] did not rise smoothly but with a faster

tendency towards crossing over the curve for a = 90°. We

consider this questionable and our results are more reliable.

The calculation procedure of FDTD in [1] may need a larger

number of nodes in order to ensure the convergence and the

accuracy of its results.

So far the effect of the conductor strip cross section on

higher order modes in microstrip lines has not been given

by other authors. Here in Fig. 6(b), it is provided for the

first higher order mode. As can be seen, the influence on the

propagation constant is also pronounced and the single-mode

bandwidth of the microstrip line varies for about 5 GHz.

Table I shows the convergence property of the effective

dielectric constant of the dominant mode in the microstrip line

with the number of division layers of the trapezoidal conductor

strip (a = 135°). We can see that a 3 or 4 layer divison yields

converged results with satisfactory accuracy. As is well known,

if the strip is extremely thin, the influence of its thickness

on the propagation property of planar transmission lines will

be very weak, so that usually a small number of divisions

give converged results and further divisions make almost no

contributions.
In Fig. 7, the effect of the metallization cross section on

the propagation constant of finlines with mounting grooves is

demonstrated. As can be seen, the discrepancy between the

results of the two conductor profiles may be as large as 10Yo.
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Fig. 6. Normalized propagation constant versus frequency for microslrips

of various cross sections. (a) Dominant mock. (b) First I@er order mode;
a = 10 mm, b = 6.05 mm, t = 300pm, s = 0.635 mm, w = 3 ]mm,
F. = 9.8.

TABLE I

CONVERGENCE PROPBRTY OF THE E F’FECTIVE DIELECTRIC CONSTANT OF THE

DOMINANT MODE m THE MICROSTRIP LINE WITH THE NUMBER OF
DIVISION LAYERS OF THE TRAPEZOIDAL CONDUCTORSTRIP (a = 135° )

—

Number

of
Lay-

Effective Dielectric Constants

ers —
1 5 10 15 20 25 30
GHz GHz GHz GHz GHz GHz GP[z—

2 2.73448 2.80811 2.89403 2.94949 2.98809 3.01626 3.03735

3 2.74168 2.81456 2.89911 2.95341 2.99107 3.01850 3.03903

4 2.74745 2.81981 2.90334 2.95674 2.99364 3.02048 3.04054

5 2.74769 2.81999 2.90346 2.95682 2.99371 3.02053 3.014058
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Fig. 7. Normalized propagation constant versus frequency for unilateral

finlines ofvarious cross sections; a=2b =3.1 mm, d=0.4mm, e= 0.2

mm, s = 0.22 mm, t = 120pm, ~, = 12.9.
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Fig. 8. Normalized propagation constant versus frequency for suspended
coplanar waveguides of various cross sections; a = 2b = 3.1 mm, d = 0.6

mm, w = 0.1 mm, s = 0.22 mm, t = 20p,m, eT = 12.9.

In the uniplanar MMIC concept [4], coplanar waveguides

(CPW’S) constitute the basic transmission line elements. Their

cross sectional dimensions can be scaled down to values much

smaller than those of the equivalent microstrip lines [4]–[6].

Because of the small cross sectional geometry, the CPW’S are

considerably less dispersive than the microstrip lines, and have

an extended frequency range as well as a reduced circuit size.

In Fig. 8, the propagation constants of both the dominant and

the first higher order mode of a suspended coplanar waveguide

(SCPW) are illustrated. While the geometry influence on the

odd mode is negligible, it is, however, significant for the

dominant mode over the whole frequency range.
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Fig. 9. Normalized propagation constant versus metallization thickness tfor
coplanar waveguides of various cross sections; a = 150 pm, b = 5 mm,

s = 0.6 mm, d = 50&m, w = 10pm, t, = 12.9.

Miniaturized CPW structures with width d of 30–70 ~m are

in use [5], [6]. For such miniaturized structures, we predict that

the conductor profile will have even more pronounced effects

on the transmission characteristics. To give an example, we

provide in Fig. 9 the data on the propagation constants of

a CPW with d = 50 ~m and center strip width 10 pm for

different metallization thickness t.As expected, for extremely

thin metallization, the influence of both its thickness and its

profile is negligible, however, as the metallization thickness t

becomes larger, the influence of its profile grows rapidly. For

example, the discrepancies between results for t = 4 flm and

that for zero metallization thickness, are about 8% and 20q0

for the rectangle and the trapezoid, respectively. Also we note

that the discrepancy between the latter two is about 12Y0. In

such cases, it is certain that the effect of the metallization cross

sections can no longer be neglected in order to obtain accurate

and reliable predictions of performances of MMIC ‘s.

IV. CONCLUSION

An analysis method has been proposed for planar waveg-

uides with arbitrary metallization cross sections, and compu-

tations have been performed for various kinds of structures,

which prove that the method is versatile and efficient. Nu-

merical results indicate that, in the development of modem

MMIC structures, which is towards higher frequencies and

miniaturized sizes, the role of the metallization geometry

becomes more and more important, and the exact modeling

of practically used configurations is necessary so that accurate

and reliable performance can be expected.
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